

Analyse LIBS sans étalonnage

Jörg Hermann

LP3, CNRS, Aix-Marseille Université, 13009 Marseille

Calibration-free LIBS

Introduction

- Principle and historical background

Validity conditions of physical model

- **Methods of calibration-free measurements**
- **Critical review of analytical performance**
- Recommendations
- **Practical advice**

Principle of calibration-free LIBS

modeling of plasma emission spectrum

comparison to measured spectrum

Principle of calibration-free LIBS

calibration curve generated by calculation

Elemental fraction

Aix*Marseille

CN

Principle of calibration-free LIBS

CF-LIBS requires model for spectrum calculation

multielemental plasma @ unique model enables this calculation

Local thermodynamic equilibrium (LTE)

Is the laser-induced plasma in LTE ?

Plasma produced by laser ablation

+ large initial density

- fast expansion dynamics

⇒ conclusion about LTE is not straightforward

- 1978 : validity of LTE in laser-produced plasma, *Eliezer et al. J. Phys D*

A generalised validity condition for local thermodynamic equilibrium in a laser-produced plasma

Shalom Eliezer, Aaron D Krumbein and David Salzmann Department of Plasma Physics, Soreq Nuclear Research Centre, Yavne, Israel

Received 9 January 1978

Theoretical investigation

- experimental validation difficult
 - low plasma reproducibility
 - limited experimental means for time-resolved broadband spectra recording

- 1978 : validity of LTE in laser-produced plasma, *Eliezer et al. J. Phys D*

- 1993 : first Boltzmann-plot for laser plasma, Hermann et al. J. Appl. Phys

FIG. 7. Boltzmann diagram of Ti I. Delay with respect to the laser pulse: $t=1 \ \mu s$, $E_{las}=53 \ mJ$ (short laser pulse), $p_0=400 \ Torr$, $d=1.0 \ mm$.

- 1978 : validity of LTE in laser-produced plasma, *Eliezer et al. J. Phys D*
- 1993 : first Boltzmann-plot for laser plasma, Hermann et al. J. Appl. Phys

FIG. 7. Boltzmann diagram of Ti I. Delay with respect to the laser pulse: $t=1 \ \mu$ s, $E_{las}=53 \ \text{mJ}$ (short laser pulse), $p_0=400 \ \text{Torr}$, $d=1.0 \ \text{mm}$.

- 1978 : validity of LTE in laser-produced plasma, *Eliezer et al. J. Phys D*
- 1993 : first Boltzmann-plot for laser plasma, Hermann et al. J. Appl. Phys
- 1995 : comparison of plasma emission to LTE calculation, Hermann et al. J. Appl. Phys

FIG. 8. Computed equilibrium densities of (a) Ti and (b) N species as a function of kT_e for 10^{18} cm⁻³ vapor density.

- 1978 : validity of LTE in laser-produced plasma, *Eliezer et al. J. Phys D*
- 1993 : first Boltzmann-plot for laser plasma, Hermann et al. J. Appl. Phys
- 1995 : comparison of plasma emission to LTE calculation, Hermann et al. J. Appl. Phys
- 1999 : invention of calibration-free LIBS, *Ciucci et al. Appl. Spectrosc.*

- 1978 : validity of LTE in laser-produced plasma, *Eliezer et al. J. Phys D*
- 1993 : first Boltzmann-plot for laser plasma, Hermann et al. J. Appl. Phys
- 1995 : comparison of plasma emission to LTE calculation, Hermann et al. J. Appl. Phys
- 1999 : invention of calibration-free LIBS, Ciucci et al. Appl. Spectrosc.

Iow analytical performance

hypotheses :

- stoichiometric ablation
- local thermodynamic equilibrium
- plasma uniform (🗸
- plasma optically thin no

- 1978 : validity of LTE in laser-produced plasma, *Eliezer et al. J. Phys D*
- 1993 : first Boltzmann-plot for laser plasma, Hermann et al. J. Appl. Phys
- 1995 : comparison of plasma emission to LTE calculation, *Hermann et al. J. Appl. Phys*
- 1999 : invention of calibration-free LIBS, Ciucci et al. Appl. Spectrosc.
- > 1999 : amended CF-LIBS approaches, most devoted to correction of self-absorption

hypotheses :

- stoichiometric ablation
- local thermodynamic equilibrium
- plasma uniform (
- plasma optically thin

- 1978 : validity of LTE in laser-produced plasma, *Eliezer et al. J. Phys D*
- 1993 : first Boltzmann-plot for laser plasma, Hermann et al. J. Appl. Phys
- 1995 : comparison of plasma emission to LTE calculation, *Hermann et al. J. Appl. Phys*
- 1999 : invention of calibration-free LIBS, Ciucci et al. Appl. Spectrosc.
- > 1999 : amended CF-LIBS approaches, most devoted to correction of self-absorption
- \geq 2008 : CF-LIBS based on spectra simulation

self-absorption intrinsically taken into account

Laser

hypotheses :

- stoichiometric ablation
- local thermodynamic equilibrium
- plasma uniform (🗸)
- plasma optically thin

Mass transfer from solid towards plasma is congruent ?

hypotheses :

- stoichiometric ablation
- local thermodynamic equilibrium
- plasma uniform
- plasma optically thin

Mass transfer from solid towards plasma is congruent ?

question on mechanism of laser ablation

- + thermal evaporation
 - element-dependent evaporation pressure (Clausius-Clapeyron equation)

⇒ non-stoichiometric mass transfer

- + phase explosion
 - ☞ high laser intensity induces large rate of vaporization ⇒ no time for segregation

⇒ stoichiometric mass transfer

hypotheses :

- stoichiometric ablation
- local thermodynamic equilibrium
- plasma uniform
- plasma optically thin

Mass transfer from solid towards plasma is congruent ?

question on mechanism of laser ablation

- + thermal evaporation
 - element-dependent evaporation pressure (Clausius-Clapeyron equation)

⇒ non-stoichiometric mass transfer

- + phase explosion
 - ☞ high laser intensity induces large rate of vaporization ⇒ no time for segregation
 - ⇒ stoichiometric mass transfer

stoichiometric ablation depends on laser intensity

Mass transfer from solid towards plasma is congruent ?

Mao et al., Appl. Spectrosc. 1998

Zn/Cu ratio in brass measured via LA-ICP-AES

(Laser ablation inductively coupled plasma atomic emission spectroscopy)

stoichiometric ablation depends on laser intensity

in conditions typical for LIBS ($F_{lgs} = 100 \text{ Jcm}^{-3}$)

⇒ mass transfer from solid to plasma stoichiometric

Plasma is in local thermodynamic equilibrium (LTE) ?

hypotheses :

- stoichiometric ablation
- local thermodynamic equilibrium
- plasma uniform
- plasma optically thin

Plasma is in local thermodynamic equilibrium (LTE) ?

Elementary processes

collisional processes :

collisional excitation / desexcitation

 $A^{I} + e^{-}(E) \iff A^{u} + e^{-}(E')$

electron impact ionization / 3 body recombination

$$A + e^{-}(E) \iff A^{+} + e^{-}(E') + e^{-}(E'')$$

radiative processes :

spontaneous emission / absorption (bound-bound transitions) $A^{u} \Leftrightarrow A^{l} + hv$ photoionization / radiative recombination (free-bound transitions) $A + hv \Leftrightarrow A^{+} + e^{-}(E)$ bremsstrahlung emission / inverse bremsstrahlung absorption (free-free transitions) $A + e^{-}(E) \Leftrightarrow A + e^{-}(E')$

out of equilibrium @ collisional-radiative modeling

→ requires rates of all processes

Plasma is in local thermodynamic equilibrium (LTE) ?

equilibrium @ principle of microscopic reversibility

⇒ each process is counterbalanced by its reverse process

plasma of large size in steady state

laboratory plasmas ☞ size < characteristic length of absorption ⇒ no microreversibility for radiative processes

equilibrium may still exist if collisional processes dominate

Plasma is in local thermodynamic equilibrium (LTE) ?

Validity of LTE

depends on experimental conditions

laser :

plasma density and lifetime depend on laser energy

 \Rightarrow sufficiently large E_{las} required

surrounding atmosphere :

plasma density and lifetime depend on gas pressure

In conditions typical for LIBS analysis

conditions of LTE achieved

⇒ plume confinement by gas

sample material :

- LTE validity depends on atomic structure
- $rac{}{}$ atoms such as H, N, O, C have large ΔE_{max}
- metal have many close lying levels

nanosecond laser, E_{las} = a few mJ, at atmospheric pressure

- ⇒ equilibrium hardly achieved
- \Rightarrow equilibrium easily achieved

Validity of LTE

Material ablation with a ns-laser

- $\begin{cases} E_{las} = 10 \text{ mJ} \\ d_{spot} = 100 \text{ } \mu \text{m} \end{cases}$ $F_{las} = 100 \text{ } J \text{ cm}^{-2}$
- \Rightarrow 10¹⁴ atomes (\cong 10 ng)
- rightarrow plume expansion $u \cong$ some 10³ m s⁻¹

 $t = 100 \text{ ns} \Rightarrow V = 0.1 \text{ mm}^3$

 \Rightarrow plasma density \cong 10¹⁸ cm⁻³

further plasma evolution depends on surrounding atmosphere

in air, $t = 1 \ \mu s$ \Rightarrow $n_e \cong 10^{17} \ cm^{-3}$

plasma in LTE for several μs

Aix+Marseille

Laser

Validity of LTE

types of radiation :

 $\infty \quad n_i = n \frac{g_i}{Q(T)} e^{-E_i/kT}$

spontaneous emission A ^u ⇔ A ^I + hv	⇒ spectral lines	
radiative recombination		
$A^+ + e^- \Rightarrow A + hv$		
bremsstrahlung	> continuum	
$\wedge + \varphi^{-}(F) \implies \wedge + \varphi^{-}(F') +$	by	

$$\propto n_e^2$$

plume expansion

 \Rightarrow strong decrease of electron density

early expansion stage

continuum dominates spectrum

Aix*Marseille

Plasma is spatially uniform ?

laser ablation under vacuum

 \Rightarrow most energetic species in the expanding plume front

laser ablation in ambient gas

- \Rightarrow most energetic species at the vapor-gas contact front ($T_{border} > T_{core}$ at early time)
- \Rightarrow cooling of plume border by cold gas ($T_{border} < T_{core}$ at late time)
- ⇒ time window expected for which the plume has an almost uniform *T*-distribution

hypotheses :

- stoichiometric ablation
 - local thermodynamic equilibrium
- plasma spatially uniform
- plasma optically thin

Plasma is spatially uniform ?

Spectral shape of strongly Stark-shifted transition

nonuniform plasma ⇒ **asymmetric** profile

Plasma is spatially uniform ?

Spectral shape of strongly Stark-shifted transition

Aix+Marseille

Plasma is spatially uniform ?

Spectral shape of strongly self-absorbed resonance line

cold border ⇒ **absorption dip**

Aix*Marseille

Plasma is spatially uniform ?

Spectral shape of strongly self-absorbed resonance line

Aix*Marseill

Self-absorption is negligible ?

LTE validity requires high density ($n_e \ge 10^{16} \text{ cm}^{-3}$)

⇒ self-absorption significant

hypotheses :

- stoichiometric ablation
- local thermodynamic equilibrium
- plasma spatially uniform
- plasma optically thin

Aix+Marseill

Compositional measurements: the mathematical problem

LTE plasma of *M* elements @M + 1 parameters

- \Rightarrow n_{A} of *M* elements and *T*
- \Leftrightarrow C₄ of *M*-1 elements, n_{e} and *T*

 n_A = number density of element A

$$m_A$$
 = atomic mass

$$\rho_{tot} = \sum_{A} n_A m_A$$

Compositional measurements: the mathematical problem

mass fraction of element A : $C_A = \frac{n_A m_A}{\rho_{tot}}$

LTE plasma of *M* elements @M + 1 parameters

- \Rightarrow n_A of *M* elements and *T*
- \Leftrightarrow C_A of M-1 elements, n_e and T
- Emission coeff.

 $\varepsilon_{ul} = A_{ul} \frac{hv}{4\pi} n_u$

Boltzmann

$$n_u = n \frac{g_u}{Q(T)} e^{-E_u/kT}$$

 \Rightarrow measurement of *M* + 1 lines

$$n_{A} = \sum_{z=0}^{z_{max}} n_{A}^{z} + 2\sum_{z=0}^{1} n_{A_{2}}^{z} + \sum_{B \neq A} \sum_{z=0}^{1} n_{AB}^{z}.$$

neutrality: $n_{e} = \sum_{A} \sum_{z=1}^{z_{max}} z n_{A}^{z}.$

 n_A = number density of element A

Aix+Marseille

$$m_A$$
 = atomic mass

$$\rho_{tot} = \sum_{A} n_A m_A$$

First approach, Ciucci et al. Appl. Spectrosc. 1999 *** multielemental Boltzmann plot**

moderate ionization $\ @ n_i << n_n \ \Rightarrow \ n_n \cong n_A := n$

Emission coeff.

Boltzmann

$$\varepsilon_{ul} = A_{ul} \frac{hv}{4\pi} n_u \qquad \Rightarrow \quad I_{ul} \propto \varepsilon_{ul} \qquad \text{if optically thin}$$
$$n_u = n \frac{g_u}{Q(T)} e^{-\varepsilon_u/kT} \qquad \Longrightarrow \quad \ln\left(\frac{I_{ul}\lambda}{A_{ul}g_u}\right) = -\frac{\varepsilon_u}{kT} + \ln\left(\frac{R}{Q}\right)$$

easy to implement
 big success
 low accuracy

reduce errors

use of many lineserror identification difficult

Aix+Marseill

First approach, Ciucci et al. Appl. Spectrosc. 1999 Car multielemental Boltzmann plot

Iow accuracy

⇒ amended methods with corrections

correction	need	feasibility
non-stoichiometric ablation	non	limited
failure of LTE	non	non
plasma non-uniformity	sometimes	limited
self-absorption	always	yes

hypotheses :

- stoichiometric ablation
- local thermodynamic equilibrium
- plasma spatially uniform
- plasma optically thin

Aix+Marseill

Methods based on spectra simulation

Doppler and Stark broadening

Aix+Marseill

- analytical solution of radiation transfer equation Hermann et al. J. Appl. Phys 1998
- \Rightarrow Spectral radiance $B_{\lambda} = U_{\lambda} (1 e^{-\tau})$
- U_{λ} = blackbody spectral radiance
- τ = optical thickness = $\int \alpha(\lambda, z) dz = \alpha(\lambda) L$
 - α = absorption coefficient = $\sum \alpha_{line}^{(i)} + \alpha_{ion} + \alpha_{IB}$
 - L = plasma diameter along line of sight

fast calculation

Methods based on spectra simulation

to spectrometer

analytical solution of radiation transfer equation Hermann et al. J. Appl. Phys 1998

spectral radiance :

$$B = \frac{U_C \left(1 - e^{-\alpha_C L_C}\right)}{e^{-\alpha_P L_P}} + U_P \left(1 - e^{-\alpha_P L_P}\right)$$

absorption coefficient :

$$\alpha(\lambda,T) = \pi r_0 \lambda^2 f_{lu} n_l P(\lambda_0,\lambda) (1 - e^{-hc/\lambda kT})$$

Aix*Marseille

Cnr

fast calculation
Methods of calibration-free measurements

Methods based on spectra simulation

CF-LIBS method developed in LP3

US patent 8942927 B2 (2015)

 T, n_{e}, L

(LTE)

universite

CF-LIBS method developed in LP3

US patent 8942927 B2 (2015)

example : analysis of fused silica (SiO₂)

LTE plasma of *M* elements $\Im M + 1$ parameters

 \Leftrightarrow C_A of M-1 elements, n_e and T

M = 2 elements ⇒ measurement of *M* + 1 lines

- *n_e* measurement
- T measurement
- composition measurement

NIST vs Kurucz databases

NIST	lon	Ritz Wavelength	Rel. Int.	A _{ki} (s ⁻¹)	Acc.	<i>E_i</i> (cm ⁻¹)	<i>E_k</i> (cm ⁻¹)	Lower Level U Conf., Term, J Co		Jpper Level onf., Term, J			
INIST.		Air (nm)	(?)			-		Kurucz	2	NI	ST	rel. er	ror
	Si II	385.3665	100 <mark>w</mark>	5.11e+06	с	n _e (cm⁻³)		2.8×10 ¹⁷		2.8×10 ¹⁷		25%	
	Si II	385.6018	500 <mark>w</mark>	4.40e+07	C+	τ	<u>///</u>	12 000		12 500		Γ0/	
	Si II	386.2595	200 <mark>w</mark>	3.91e+07	C+			13,800)	13,:	500	5%	
	Si I	390.5523	300	1.33e+07	В	Si	(%)	34.7		29	.4	14%	, D
Kurucz	Wl / nm A-Value Element E_ vac<200nm <air (name)<="" 1="" s="" th=""><th colspan="2">O (%)</th><th>65.2</th><th colspan="2">65.2</th><th colspan="2">70.6</th><th colspan="2">6%</th></air>				O (%)		65.2	65.2		70.6		6%	
	38 38 38 39	35.3665 3. 35.6018 3. 36.2595 3. 90.5523 1.	412e+(108e+(405e+(184e+(06 Si II 07 Si II 07 Si II 07 Si II 07 Si I		55309.350 55325.180 55309.350 15394.370	1.5 s3p2 2 2.5 s3p2 2 1.5 s3p2 2 0.0 3p2 1s	D 81251 D 81251 D 81251 D 81191 40991	.320 .320 .340 .884	1.5 4p 1.5 4p 0.5 4p 1.0 p4s	2P 2P 2P 1P		

CITS (Aix*Marseille université

Introduction

- Principle and historical background

Validity conditions of physical model

Methods of calibration-free measurements

Critical review of analytical performance

Recommendations

Practical advice

many CF-LIBS studies @ low accuracy for minor and trace elements

What is the origin of large measurements errors ?

The often attributed closure condition ($\sum_{A} C_{A} = 1$ **)** Gornushkin et al., SAB 2018

Small errors of major elements induce large errors on trace minor elements ?

mass fraction of element A:
$$C_A = \frac{n_A m_A}{\rho_{tot}}$$
 $\rho_{tot} = \sum_A n_A m_A$
fraction measurement error: $\frac{\Delta C_A}{C_A} = \sqrt{(1 - C_A)^2 \left(\frac{\Delta n_A}{n_A}\right)^2 + \sum_{j \neq A}^N C_j^2 \left(\frac{\Delta n_j}{n_j}\right)^2}$

largest contribution of minor element errors

⇒ does not originate from uncertainties of major elements

many CF-LIBS studies @ low accuracy for minor and trace elements

What is the origin of large measurements errors ?

- Iow signal-to-noise ratio
- CF-LIBS needs LTE validity
- ⇒ large electron density required
- ⇒ intense continuum (collisions between charged particles)

situation worse with organic materials

- C, H, N, O have large energy gaps
- LTE establishment more difficult
- ⇒ higher N_e required
- ⇒ continuum more intense

many CF-LIBS studies @ low accuracy for minor and trace elements

What is the origin of large measurements errors ?

Chen et al., SAB 2018

Iow signal-to-noise ratio

solution = two-step procedure

C, H, N and O out of equilibrium

enhanced CF-LIBS sensitivity

many CF-LIBS studies @ low accuracy for minor and trace elements

What is the origin of large measurements errors ?

Trace element fractions on surface differ from those of bulk

What is the error due to self-absorption ?

$$\Rightarrow$$
 Spectral radiance $B_{\lambda} = U_{\lambda} (1 - e^{-\tau})$

 \Rightarrow strong self-absorption ($\tau >> 1$) $\Rightarrow B_{\lambda} = U_{\lambda}$

⇒ strong lines saturate at blackbody radiance

What is the error due to self-absorption ?

⇒ strong lines saturate at blackbody radiance

What is the error due to self-absorption ?

Intensity lowering due self-absorption to depends on line shape

What is the error due to self-absorption ?

Intensity lowering due self-absorption to depends on line shape

What is the error due to self-absorption ?

What are the principal error sources ?

using rigorous error calculations we obtain

optically thin case ($\tau \ll 1$) :

$$\frac{\Delta n_A}{n_A} = \sqrt{\left(\frac{\Delta I}{I}\right)^2 + \left(\frac{\Delta A_{ul}}{A_{ul}}\right)^2}$$

 ΔI = intensity measurement error (signal-to-noise ratio, apparatus response, line interference, ...) ΔA_{ul} = uncertainty of transition probability

general case :

$$\begin{split} \frac{\Delta n_A}{n_A} &= \sqrt{\left(\frac{\Delta \tau_0}{\tau_0}\right)^2 + \left(\frac{\Delta A_{ul}}{A_{ul}}\right)^2 + (1 - e^{-\tau_0})\left(\left(\frac{\Delta w_{sd}}{w_{sd}}\right)^2 + \left(\frac{\Delta L}{L}\right)^2\right)} \\ \frac{\Delta \tau_0}{\tau_0} &= \frac{1}{\tau_0} \frac{f(\tau_0)}{f'(\tau_0)} \frac{\Delta I}{I} \equiv g(\tau_0) \frac{\Delta I}{I} \end{split}$$

 Δw_{sd} = uncertainty of line width

- large errors, 10% in best case
- ΔL = uncertainty of plasma diameter

if w_{sd} and L are precisely known ⇒ strongly self-absorbed lines can be used for CF-LIBS

Taleb et al., SAB 2021

Introduction

- Principle and historical background

Validity conditions of physical model

- **Methods of calibration-free measurements**
- **Critical review of analytical performance**
- Recommendations
- **Practical advice**

Recommendations

Apparatus requirements

spectrometer:

- CF-LIBS @ all sample composing elements have to be measured
- ⇒ observation of broadband spectral range
- n_e -measurement, evaluation of self-absorption \Rightarrow high resolving power
- echelle spectrometer

Recommendations

Apparatus requirements

spectrometer: 🖝 echelle type

sample holder:

echelle spectrometers suffer low sensitivity

⇒ signal acquisition over large number of laser ablation events (≥ 100)
reproducible plasma generation
avoid deep drilling
crater depth << crater diameter

 \Rightarrow apply a few laser pulses per site (5, 10, 20)

motorized sample holder

Apparatus requirements

spectrometer: 🖙 echelle type

sample holder: ***** motorized

apparatus response correction:

apparatus response typically measured with radiation standards

UV range (200 – 400 nm) 🛛 📽 deuterium arc

calibration of echelle spectrometers challenging
due to significant intensity variation on broad spectral range

Apparatus requirements

calibration of echelle spectrometers challenging
due to significant intensity variation on broad spectral range

situation is worse with compact radiation standards

method for checking and correcting apparatus response

Etalonnage du spectromètre par plasma laser

plasma uniforme en ETL @ calcul précis du spectre

ablation de l'acier @ spectre riche, valeurs A_{ul} précises sur NIST

Réponse de l'appareil déduite du rapport I_{mes} / I_{comp}

Etalonnage du spectromètre par plasma laser

écart-type des fluctuations = intervalle de confiance moyenne des A_{ul} = 15%

 $rightarrow plasma laser = moyen pour mesurer <math>A_{ul}$

Apparatus requirements spectrometer: @ echelle type sample holder: @ motorized

apparatus response correction: *radiation standards,*

checking with laser plasma on steel

Experimental conditions

laser: pulse energy \Rightarrow plasma lifetime $\Rightarrow E_{min}$ required for LTE \Rightarrow ablated mass \Rightarrow self-absorptiona few mJfor UV laser

spectrometer: @ echelle type

sample holder: **@ motorized**

apparatus response correction: *radiation standards,*

checking with laser plasma on steel

Experimental conditions

laser: pulse energy \checkmark a few mJ (UV laser) beam focusing \Rightarrow to spot of 100 µm \Rightarrow $F_{las} \approx 100$ Jcm⁻² \Rightarrow stoichiometric ablation

spectrometer: @ echelle type

sample holder: **@ motorized**

apparatus response correction: 🖝 radiation standards,

checking with laser plasma on steel

Experimental conditions

laser: pulse energy $\ensuremath{\overset{@}{=}}$ a few mJ (UV laser)beam focusing $\ensuremath{\overset{@}{=}}$ to spot of 100 $\mbox{\mu}$ mpulse duration $\ensuremath{\overset{@}{=}}$ $\ensuremath{\tau_{las}} > \ensuremath{\tau_{e-i}}$ $\ensuremath{\overset{@}{=}}$ nanosecond laser

spectrometer: @ echelle type

sample holder: **@ motorized**

apparatus response correction: 🖝 radiation standards,

checking with laser plasma on steel

Experimental conditions

- laser: pulse energy *realized a few mJ* (UV laser)
 - beam focusing *rest of to spot of 100 μm*
 - pulse duration 🖉 nanosecond
 - wavelength \Rightarrow UV radiation \Rightarrow energy deposition on sample surface

 \Rightarrow spatially uniform plasma

spectrometer: 🖝 echelle type

sample holder: 🏾 motorized

apparatus response correction: 🖝 radiation standards,

checking with laser plasma on steel

Experimental conditions

- laser: pulse energy a few mJ (UV laser)
 - beam focusing 🧼 🕗 to spot of 100 μm
 - pulse duration <a>

 - wavelength **Constant Constant W V radiation**

spectra recording:gate delay \Rightarrow n_e large enough to ensure LTEgate width \Rightarrow $\Delta T/T$, $\Delta n_e/n_e << 1$ \Rightarrow Δt_{gate} small \Rightarrow S/N ratio \Rightarrow Δt_{gate} large $\Delta t_{gate} = t_{delay}/2$

spectrometer: 🖝 echelle type

sample holder: 🏾 motorized

apparatus response correction: 🖝 radiation standards,

checking with laser plasma on steel

Experimental conditions

- laser: pulse energy *realized a few mJ* (UV laser)
 - beam focusing 🧼 🕗 to spot of 100 μm
 - pulse duration *** nanosecond**
 - wavelength **V radiation**
- **spectra recording:** gate delay \Rightarrow n_e large enough to ensure LTE

gate width $\Rightarrow \Delta t_{gate} = t_{delay}/2$

signal treatment ⇒ noise subtraction before response correction

Experimental conditions

 laser:
 pulse energy
 Image: a few mJ (UV laser)

 beam focusing
 Image: to spot of 100 μm

 pulse duration
 Image: nanosecond

 wavelength
 Image: UV radiation

spectra recording: gate delay $\Rightarrow n_e$ large enough to ensure LTE gate width $\Rightarrow \Delta t_{gate} = t_{delay}/2$

signal treatment ⇒ noise subtraction before response correction

atmospheric conditions: pressure \Rightarrow large enough to ensure LTE

- \Rightarrow low enough to minimize coll. quenching
- ⇒ atmospheric pressure

Experimental conditions

laser:pulse energy $\ensuremath{^{er}}$ a few mJ (UV laser)beam focusing $\ensuremath{^{er}}$ to spot of 100 µmpulse duration $\ensuremath{^{er}}$ nanosecondwavelength $\ensuremath{^{er}}$ UV radiationspectra recording:gate delay \Rightarrow n_e large enough to ensure LTE

gate width $\Rightarrow \Delta t_{gate} = t_{delay}/2$

signal treatment ⇒ noise subtraction before response correction

atmospheric conditions: pressure *atmospheric*

gas nature \Rightarrow argon \Rightarrow higher brilliance

- ⇒ longer plasma lifetime
- ⇒ plasma spatially uniform

Experimental conditions

laser:	pulse energy	a few mJ (UV laser)
	beam focusing	To spot of 100 μm
	pulse duration	nanosecond
	wavelength	UV radiation
spectra recording: gate delay $\Rightarrow n_e$ large enough to ensure LTE gate width $\Rightarrow \Delta t_{aate} = t_{delay}/2$		
	sign	al treatment \Rightarrow noise subtraction before response correction
atmospheric conditions: pressure @ atmospheric		
		gas nature 🛛 📽 argon for improved accuracy

laboratory environment: **T-stabilized**

Selection of spectral lines

- transition probability A_{ul} ***** highest accuracy
- upper level energy *E*_u
- close values of analytical lines
 reduce impact of *T*-measurement uncertainty

wavelength λ

close values of analytical lines

⇒ reduce impact of apparatus response error

- optical thickness au
- Iowest
- signal-to-noise ratio 🛛 🖉 highest

automated choice @ minimize analytical error

$$\begin{split} \frac{\Delta n_A}{n_A} &= \sqrt{\left(\frac{\Delta \tau_0}{\tau_0}\right)^2 + \left(\frac{\Delta A_{ul}}{A_{ul}}\right)^2 + (1 - e^{-\tau_0})\left(\left(\frac{\Delta w_{sd}}{w_{sd}}\right)^2 + \left(\frac{\Delta L}{L}\right)^2\right)} \\ \frac{\Delta \tau_0}{\tau_0} &= \frac{1}{\tau_0} \frac{f(\tau_0)}{f'(\tau_0)} \frac{\Delta I}{I} = g(\tau_0) \frac{\Delta I}{I}. \end{split}$$

Introduction

- Principle and historical background

Validity conditions of physical model

- **Methods of calibration-free measurements**
- **Critical review of analytical performance**

Recommendations

Practical advice

Practical advice

How to perform CF-LIBS analysis ?

- record valid spectrum
- measure apparatus response function
- measure apparatus width as function of wavelength
- get user account on LP3 server
- deposit corrected spectrum on server
- proceed spectrum with semi-automated CF-LIBS software

In the future

portable software will be available

Practical advice

book chapter

"Calibration-free laser-induced breakdown spectroscopy"

in

"Laser-Induced Breakdown Spectroscopy (LIBS): Concepts, Instrumentation, Data Analysis and Applications" to be published by John Wiley & Sons Ltd editors Vivek K. Singh, Y. Deguchi, Zhenzhen Wang, Durgesh K. Tripathi

get a pdf-copy

jorg.hermann@univ-amu.fr

