

LA LIBS POUR LES NULS

Vincent Motto-Ros

Equipe SpectroBIO Institut Lumière Matière vincent.motto-ros@univ-lyon1.fr

ANF LIBS 15-17 Novembre 2021 Orléans

Les prochaines Journées LIBS France auront lieu à Marseille les **1 et 2 juin 2022** dans l'<u>hexagone</u>, 163 avenue de Luminy, sur le campus de Luminy de l'université Aix-Marseille. Cet événement sera l'occasion de réunir les acteurs français et francophones de la spectroscopie du plasma induit par laser, technique connue sous l'acronyme *LIBS* pour *« Laser-Induced Breakdown Spectroscopy »*. En plus des laboratoires de recherche fondamentale et appliquée, des concepteurs et utilisateurs de systèmes de mesure LIBS et des distributeurs sont attendus. Ces journées démarreront par une conférence de Jean-Michel Mermet, ancien Directeur de recherche CNRS au laboratoire des sciences analytiques, Université Claude Bernard Lyon 1 intitulée « *Une histoire (inachevée) de l'analyse par spectrométrie d'émission atomique »*. PLAN

La LIBS pour les nuls

- Préambule
- Le plasma induit par laser
- Avantages et inconvénients
- Quelques applications de la LIBS
- Conclusion

LES PLASMAS

- En physique chimie, un plasma est un état de la matière similaire à un gaz dans lequel une certaine portion de particules sont ionisés.
- Les plasmas sont extrêmement répandus dans l'Univers (99% de la matière connue) mais ils passent presque inaperçus dans notre environnement proche, car leurs conditions d'apparition sont très éloignées des conditions de température et de pression de l'atmosphère terrestre.
- Ainsi, on distingue les plasmas naturels :

 les étoiles,
 les nébuleuses gazeuses,
 les aurores boréales,
 les éclairs,
 la queue des comètes,
 la traînée des étoiles filantes...

UN AUTRE TYPE DE SOURCES LUMINEUSES : LES PLASMAS

Les différents types de plasmas

*LIP : Laser Induced Plasma

Sources lumineuses : Le plasma induit par Laser

UN TRAVAIL PIONNIER ...

Compte-rendu de l'Académie des Sciences, Séance du 25 Novembre 1963

SPECTROSCOPIE. — De l'utilisation du faisceau issu d'un amplificateur à ondes lumineuses par émission induite de rayonnement (laser à rubis), comme source énergétique pour l'excitation des spectres d'émission des éléments. Note (*) de M^{me} JEANNINE DEBRAS-GUÉDON et M^{me} NICOLE LIODEC, présentée par M. Jean-Jacques Trillat.

LA LIBS ET SES SYNONYMES

- LIBS : LASER-INDUCED BREAKDOWN SPECTROSCOPY
 - LIPS : LASER-INDUCED PLASMA SPECTROSCOPY

LES MOINS CONNUS - LSS : LASER SPARK SPECTROSCOPY

- LOES : LASER OPTICAL EMISSION SPECTROSCOPY

EN FRANÇAIS

- SPECTROSCOPIE DE PLASMA INDUIT PAR LASER - ABLATION LASER COUPLÉE À LA SPECTROSCOPIE D'ÉMISSION OPTIQUE (AL/SEO) LIBS, HIER ET AUJOURD'HUI

Publications scientifiques consacrées à la LIBS par an

The most significant series of events occurring in the past four decades in the field of analytical atomic spectroscopy have been the invention of laser and the development of array detectors. These events have led in the past 25 years to the emergence of laser-induced breakdown spectroscopy (LIBS), ... This technique has dominated analytical the atomic spectroscopy scene in the last decade much like atomic absorption spectroscopy dominated in the 1960-1970s, ICP atomic emission spectroscopy in the 1970-1980s, and ICP mass spectroscopy in the 1980-1990s...

in the Foreword of Handbook of LIBS

Professor J.D. Winefordner, University of Florida.

DU LASER À LA LIBS...

Invention du laser Naissance de la LIBS Etincelles laser

Gaz, liquide et solide

Laser à Q-switch Début des applications bio, acier, aérosol, nucléaire

Instrumentation pour LIBS Portable, stand-off, underwater Fibre optique Echelle spectromère Calibration-Free LIBS

Instrument commercial NASA Mars mission LIBS conférence

	1960	Ted Maiman develops the first pulsed laser
	1963	First analytical use of a laser-plasma on surfaces, hence the birth of laser-induced
		breakdown spectroscopy
	1963	First report of a laser plasma in a gas
	1963	Laser micro-spectral analysis demonstrated, primarily with cross-excitation
	1963	Laser plasmas in liquids were initially investigated
	1964	Time-resolved laser plasma spectroscopy introduced
	1966	Characteristics of laser-induced air sparks studied
	1966	Molten metal directly analyzed with the laser spark
	1970	Continuous optical discharge reported
	1970	Q-switched laser use reported, results compared with normal laser pulses
	1971	Biological materials investigated with LIBS
	1972	Steel analysis carried out with a Q-switched laser
	1978	Laser spectrochemical analysis of aerosols reported
	1980	LIBS used for corrosion diagnostics in nuclear reactors
	1982	Initial use of the acoustic properties of the laser-induced spark
	1984	Analysis of liquid samples and hazardous aerosols demonstrated
	1988	Attempts made to enhance intensities through electric and magnetic fields
	1989	Metals detected in soils using laser plasma method
	1992	Portable LIBS unit for monitoring surface contaminants developed
	1992	Stand-off LIBS for space applications demonstrated
	1993	Underwater solid analysis via dual-pulse LIBS demonstrated
r	1995	Demonstration of fiber optic delivery of laser pulses
	1995	Multiple-pulse LIBS reported for use on steel samples
	1997	LIBS use in applications in painted works of art and illuminated manuscripts
	1998	Subsurface soil analysis by LIBS-based cone penetrometers shown
	1998	Reports on the use of echelle spectrometers coupled with CCD detectors
	1999	Trace metal accumulation in teeth observed with LIBS
	1999	Pulses from different lasers used to enhance LIBS performance
	1999	Calibration-free LIBS introduced
-	2000	Report on commercial instrument for coal analysis
	2000	Demonstration of LIBS on a NASA Mars rover
	2000	First International conference on LIBS – Pisa, Italy
	2002	Second International Conference on LIBS - Orlando, FL
	2004	Third International Conference on LIBS - Malaga, Spain
	2004	LIBS approved for 2009 Mars mission

MARS SCIENCE LABORATORY : CURIOSITY ROVER

MARS SCIENCE LABORATORY : CURIOSITY ROVER

L'ABLATION LASER : MÉTHODE D'ÉCHANTILLONNAGE UNIVERSELLE

Verre

LA LIBS ET LES EXPERTS...

PROCESSUS PHYSIQUES IMPLIQUÉS DANS LA LIBS

- Absorption du rayonnement par la cible
- Création d'un milieu avec température et pression élevées
- Propagation d'ondes de pression et dispersion thermique
- Transition de phase et décomposition du matériau
- Ionisation
- Ejection d'électrons, d'ions et de particules neutres
- Formation d'un panache de plasma
- Collisions et réactions chimiques
- Emissions radiatives (LIBS)

LASER INDUCED BREAKDOWN SPECTROSCOPY

EVOLUTION TEMPORELLE DU PLASMA INDUIT PAR LASER

Caméra ICCD couplée à un Xerny Turner ou un spectromètre échelle

50 ns

HOMOGÉNÉITÉ DU PLASMA INDUIT PAR LASER

EVOLUTION SPATIO-TEMPORELLE DU PLASMA INDUIT PAR LASER

Détection possible de tous les éléments du tableau périodique

- Haute sélectivité
- Sensibilité du ppm à la centaine de ppm en fonction des éléments

💌 Rapide (~seconde) et mesure à distance (1cm 🔿 100 m)

Ablation Laser

- Préparation d'échantillon non nécessaire
- Analyse en profondeur
- Mesures localisées

DU SPECTRES LIBS AUX DONNÉES ANALYTIQUES

••

Détection possible de tous les éléments du tableau périodique

- Haute sélectivité
- Sensibilité du ppm à la centaine de ppm en fonction des éléments

■ Rapide (~seconde) et mesure à distance (1cm → 100 m)

Ablation Laser

- Préparation d'échantillon non nécessaire
- Analyse en profondeur
- Mesures localisées

Laser-Induced Remote Sensing for Chemistry and Micro-Imaging ChemCam will be part of the Mars Science Laboratory (MSL) rover in 2011

Détection possible de tous les éléments du tableau périodique

- Haute sélectivité
- Sensibilité du ppm à la centaine de ppm en fonction des éléments
- Rapide (~seconde) et mesure à distance (1cm -> 100 m)

Ablation Laser

- Préparation d'échantillon non nécessaire
- Analyse en profondeur
- Mesures localisées

Détection possible de tous les éléments du tableau périodique

- Haute sélectivité
- Sensibilité du ppm à la centaine de ppm en fonction des éléments

Rapide (~seconde) et mesure à distance (1cm \rightarrow 100 m)

Ablation Laser

- Préparation d'échantillon non nécessaire
- Analyse en profondeur
- Mesures localisées

Détection possible de tous les éléments du tableau périodique

- Haute sélectivité
- Sensibilité du ppm à la centaine de ppm en fonction des éléments

Rapide (~seconde) et mesure à distance (1cm \rightarrow 100 m)

Ablation Laser

- Préparation d'échantillon non nécessaire
- Analyse en profondeur
- Mesures localisées

Echantillonnage laser

- Limité ultimement par la limite de diffraction ~1 μm
- Possible de faire des analyses invisibles à l'œil nu

UN EXEMPLE CONCRET : APPLICATION AU PATRIMOINE

- Analyse de peintures Murales
 - Bien moins destructive que les méthodes classiques... et analyse en temps réel
 - Etude de peinture multicouches

V. Detalle

ANALYSES DE FRAGMENTS DE VERRES

ECHANTILLONNAGE LASER : CARTOGRAPHIE DE SPÉLÉOTHÈME

MICRO ANALYSE POSSIBLE – COUPLAGE À UN MICROSCOPE

Pr

Zoom

Un plasma induit par laser...

"…est un objet complexe qui résulte de mécanismes non linéaires et qui s'étend dans le temps et l'espace en interagissant avec l'atmosphère"

Reproductibilité médiocre

- Signaux bruités
- Effet de matrice(T and Ne)
- Grande quantité d'information
- Energie, longueur d'onde laser
- Morphologie de l'échantillon
- Paramètres de détection
- Optiques de focalisation et de détection...

Un plasma induit par laser...

"...est un objet complexe qui résulte de mécanismes non linéaires et qui s'étend dans le temps et l'espace en interagissant avec l'atmosphère"

Reproductibilité médiocre

- Signaux bruités
- Effet de matrice(T and Ne)
- Grande quantité d'information

Physique des plasmas

"...est un objet complexe qui résulte de mécanismes non linéaires et qui s'étend dans le temps et l'espace en interagissant avec l'atmosphère"

Reproductibilité médiocre

- Signaux bruités
- Effet de matrice(T and Ne)
- Grande quantité d'information

Equation de Boltzmann : densité de population des émetteurs

$$I_{\alpha}^{z} = f \frac{hc}{\lambda_{\alpha}^{z}} \frac{A_{\alpha}^{z} g_{\alpha}^{z}}{U^{z}(T)} N_{\alpha}^{z} \exp\left[-\frac{E_{\alpha}^{z}}{kT}\right] \qquad z=0 \text{ (neutral)} \\ z=1 \text{ (singly ionised)}$$

Equation de Saha : population des degrés d'ionisation

$$\frac{N_{\alpha}^{1}}{N_{\alpha}^{0}} = \frac{2}{Ne} \frac{U_{\alpha}^{1}(T)}{U_{\alpha}^{0}(T)} \left(\frac{mkT}{2\pi\hbar^{2}}\right)^{3/2} \exp\left[-\frac{E_{ion}^{1} - \Delta E}{kT}\right]$$

T and Ne sont ≻ Les paramètres du plasma

Physique des plasmas

"...est un objet complexe qui résulte de mécanismes non linéaires et qui s'étend dans le temps et l'espace en interagissant avec l'atmosphère"

Reproductibilité médiocre

- Signaux bruités
- Effet de matrice(T and Ne)
- Grande quantité d'information

Différents types de lait analysés par LIBS montrent de forts effets de matrice ont été observés entre les lait pour bébé et les autres...

Un exemple avec des poudres de lait...

MAIS... EN CE QUI CONCERNE L'ANALYSE QUANTITATIVE...

Physique des plasmas

"...est un objet complexe qui résulte de mécanismes non linéaires et qui s'étend dans le temps et l'espace en interagissant avec l'atmosphère"

Reproductibilité médiocre

- Signaux bruités
- Effet de matrice(T and Ne)
- Grande quantité d'information

MAIS... EN CE QUI CONCERNE L'ANALYSE QUANTITATIVE...

UTILISATION DE MÉTHODES CHIMIOMÉTRIQUE...

Los Angeles (LA) 30 Octobre 1999 LA001-43 (shergottite basaltique) **Poudres** certifiée Andesite Réseaux de neurones artificiles Grey Soil <u>Input</u>: Intensity at Perceptron à 3 couches (3FP) Black Soil Output: Predicted Red Soil selected Input frame Hidden frame Output frame concentrations wavelength Rocks N₁ P_1 N₁ N₁ С Sediments Basalt P_2 N₂ N₂ N₂ Anarthosite **K-Feldspar** P_n N Nk Nn Sillmanite С Kaolin... n neurons k neurons I neurons 5% 80% 5% 50% 2.5% 2.5% Pyroxene (Ca,Mg,Fe)₂Si₂O₆ 10% 0% 0% MgO Na₂O iO. Plagioclase Na Al Si₃O₈ 60% 16% 10% 10% 2% 5% 8% Plagioclase Ca Al₂ Si₃O₈ 0% 0% 0% Fe,O, K.O Fayalite olivine Fe₂ Si O₄ Image 50% 20% Subtraction 25% 10% Titanmagnetite 0% 0% Fe (Fe, Ti)₂ O₄ AI,O, CaO

CALIBRATION FREE – LIBS : PRINCIPE

CALIBRATION FREE – LIBS : PRINCIPE

MESURES CF-LIBS SUR DU LAIT EN POUDRE

LIBS Setup standard Contrôle de l'énergie Contrôle de la focalisation Contrôle de la surface de l'échantillon Imagerie Optique & Raman

LIBS Setup standard Contrôle de l'énergie Contrôle de la focalisation Contrôle de la surface de l'échantillon Imagerie Optique & Raman Contrôle de la détection (Patent Autostar L978) Motto-Ros et al., Spectrochim. Acta B (2014)

"LIBS" Central Unit a quick review...

Motto-Ros et al., Spectrochim. Acta B (2014)

Lateral detection

Patent deposited 2012

MEASUREMENT REPRODUCIBILITY

Protocol

- Measurements performed on 2 reference samples each day
- 200 spectra recorded sucessively per day
- No normalization of any type

Validation instrumentale Reproductibilité à court terme

Motto-Ros et al., Spectrochim. Acta B (2014)

ILM INSTITUT LUMIERE MATIERE

CRITT MATERIAUX ALSACE

CONCLUSION

Aucune technique n'est parfaite, seuls les résultats peuvent l'être...

La LIBS se dérive sous de multiples formes, attention de comparer ce qui est comparable...