

LA LIBS POUR LES NULS

Vincent Motto-Ros

Equipe SpectroBIO
Institut Lumière Matière

vincent.motto-ros@univ-lyon1.fr

ANF LIBS 15-17 Novembre 2021 Orléans

Les prochaines Journées LIBS France auront lieu à Marseille les 1 et 2 juin 2022 dans l'hexagone, 163 avenue de Luminy, sur le campus de Luminy de l'université Aix-Marseille. Cet événement sera l'occasion de réunir les acteurs français et francophones de la spectroscopie du plasma induit par laser, technique connue sous l'acronyme LIBS pour « Laser-Induced Breakdown Spectroscopy ». En plus des laboratoires de recherche fondamentale et appliquée, des concepteurs et utilisateurs de systèmes de mesure LIBS et des distributeurs sont attendus. Ces journées démarreront par une conférence de Jean-Michel Mermet, ancien Directeur de recherche CNRS au laboratoire des sciences analytiques, Université Claude Bernard Lyon 1 intitulée « Une histoire (inachevée) de l'analyse par spectrométrie d'émission atomique ».

PLAN

La LIBS pour les nuls

- Préambule
- Le plasma induit par laser
- Avantages et inconvénients
- Quelques applications de la LIBS
- Conclusion

LES PLASMAS

- En physique chimie, un plasma est un état de la matière similaire à un gaz dans lequel une certaine portion de particules sont ionisés.
- Les plasmas sont extrêmement répandus dans l'Univers (99% de la matière connue) mais ils passent presque inaperçus dans notre environnement proche, car leurs conditions d'apparition sont très éloignées des conditions de température et de pression de l'atmosphère terrestre.

Ainsi, on distingue les plasmas naturels :

les étoiles, les nébuleuses gazeuses, les aurores boréales, les éclairs, la queue des comètes, la traînée des étoiles filantes...

UN AUTRE TYPE DE SOURCES LUMINEUSES : LES PLASMAS

Les différents types de plasmas

*LIP: Laser Induced Plasma

Sources lumineuses: Le plasma induit par Laser

UN TRAVAIL PIONNIER ...

Compte-rendu de l'Académie des Sciences, Séance du 25 Novembre 1963

SPECTROSCOPIE. — De l'utilisation du faisceau issu d'un amplificateur à ondes lumineuses par émission induite de rayonnement (laser à rubis), comme source énergétique pour l'excitation des spectres d'émission des éléments. Note (*) de M^{me} Jeannine Debras-Guédon et M^{me} Nicole Liodec, présentée par M. Jean-Jacques Trillat.

Fig. >.

LA LIBS ET SES SYNONYMES

- LIBS: LASER-INDUCED BREAKDOWN SPECTROSCOPY
 - LIPS: LASER-INDUCED PLASMA SPECTROSCOPY

LES MOINS CONNUS

- LSS: LASER SPARK SPECTROSCOPY
- LOES: LASER OPTICAL EMISSION SPECTROSCOPY

EN FRANÇAIS

- SPECTROSCOPIE DE PLASMA INDUIT PAR LASER
- ABLATION LASER COUPLÉE À LA SPECTROSCOPIE D'ÉMISSION OPTIQUE (AL/SEO)

LIBS, HIER ET AUJOURD'HUI

Publications scientifiques consacrées à la LIBS par an

The most significant series of events occurring in the past four decades in the field of analytical atomic spectroscopy have been the invention of laser and the development of array detectors. These events have led in the past 25 years to the emergence of laser-induced breakdown spectroscopy (LIBS), ... This technique has dominated analytical the atomic spectroscopy scene in the last decade much like atomic absorption spectroscopy dominated in the 1960-1970s, ICP atomic emission spectroscopy in the 1970-1980s, and ICP mass spectroscopy in the 1980-1990s...

in the Foreword of Handbook of LIBS

Professor J.D. Winefordner, University of Florida.

DU LASER À LA LIBS...

Incontinu do Inno	1960	Ted Maiman develops the first pulsed laser
Invention du laser	1963	First analytical use of a laser-plasma on surfaces, hence the birth of laser-induced
Naissance de la LIBS		breakdown spectroscopy
		First report of a laser plasma in a gas
Etincelles laser	1963	Laser micro-spectral analysis demonstrated, primarily with cross-excitation
Gaz, liquide et solide	1963	Laser plasmas in liquids were initially investigated
daz, ilquide et solide	1964	Time-resolved laser plasma spectroscopy introduced
	1966	Characteristics of laser-induced air sparks studied
-	1966	Molten metal directly analyzed with the laser spark
		Continuous optical discharge reported
Lacous à O avvitale	1970 1971	Q-switched laser use reported, results compared with normal laser pulses
Laser à Q-switch		Biological materials investigated with LIBS Steel analysis carried out with a Q-switched laser
Début des applications	1978	Laser spectrochemical analysis of aerosols reported
• •	1980	LIBS used for corrosion diagnostics in nuclear reactors
bio, acier, aérosol,	1982	Initial use of the acoustic properties of the laser-induced spark
nucléaire	1984	Analysis of liquid samples and hazardous aerosols demonstrated
ilucieane	1988	Attempts made to enhance intensities through electric and magnetic fields
	1989	Metals detected in soils using laser plasma method
	1992	
Instrumentation pour LIBS	1992	Stand-off LIBS for space applications demonstrated
·	1993	Underwater solid analysis via dual-pulse LIBS demonstrated
Portable, stand-off, underwater	1995	Demonstration of fiber optic delivery of laser pulses
ribro optiquo	1995	Multiple-pulse LIBS reported for use on steel samples
Fibre optique	1997	LIBS use in applications in painted works of art and illuminated manuscripts
Echelle spectromère	1998	Subsurface soil analysis by LIBS-based cone penetrometers shown
-	1998	Reports on the use of echelle spectrometers coupled with CCD detectors
Calibration-Free LIBS	1999	Trace metal accumulation in teeth observed with LIBS
	1999	Pulses from different lasers used to enhance LIBS performance
-	1999 2000	Calibration-free LIBS introduced
Instrument commercial	2000	Report on commercial instrument for coal analysis Demonstration of LIBS on a NASA Mars rover
	2000	First International conference on LIBS – Pisa, Italy
NASA Mars mission	2000	Second International Conference on LIBS – Orlando, FL
LIDC confórance	2004	Third International Conference on LIBS - Malaga, Spain
LIBS conférence		LIBS approved for 2009 Mars mission
	2001	seems appeared to some immedian

MARS SCIENCE LABORATORY: CURIOSITY ROVER

MARS SCIENCE LABORATORY: CURIOSITY ROVER

L'ABLATION LASER: MÉTHODE D'ÉCHANTILLONNAGE UNIVERSELLE

LA LIBS ET LES EXPERTS...

PROCESSUS PHYSIQUES IMPLIQUÉS DANS LA LIBS

- Absorption du rayonnement par la cible
- Création d'un milieu avec température et pression élevées
- Propagation d'ondes de pression et dispersion thermique
- Transition de phase et décomposition du matériau
- Ionisation
- Ejection d'électrons, d'ions et de particules neutres
- Formation d'un panache de plasma
- Collisions et réactions chimiques
- Emissions radiatives (LIBS)

LASER INDUCED BREAKDOWN SPECTROSCOPY

EVOLUTION TEMPORELLE DU PLASMA INDUIT PAR LASER

Détection fenêtrée conseillée

Appareillage standard

Caméra ICCD couplée à un Xerny Turner ou un spectromètre échelle

HOMOGÉNÉITÉ DU PLASMA INDUIT PAR LASER

EVOLUTION SPATIO-TEMPORELLE DU PLASMA INDUIT PAR LASER

- Détection possible de tous les éléments du tableau périodique
 - Haute sélectivité
 - Sensibilité du ppm à la centaine de ppm en fonction des éléments
- \triangleright Rapide (~seconde) et mesure à distance (1cm \rightarrow 100 m)
- Ablation Laser
 - Préparation d'échantillon non nécessaire
 - Analyse en profondeur
 - Mesures localisées

Du spectres LIBS aux données analytiques

- Détection possible de tous les éléments du tableau périodique
 - Haute sélectivité
 - Sensibilité du ppm à la centaine de ppm en fonction des éléments
- Rapide (~seconde) et mesure à distance (1cm -> 100 m)
- Ablation Laser
 - Préparation d'échantillon non nécessaire
 - Analyse en profondeur
 - Mesures localisées

- Détection possible de tous les éléments du tableau périodique
 - Haute sélectivité
 - Sensibilité du ppm à la centaine de ppm en fonction des éléments
- Rapide (~seconde) et mesure à distance (1cm -> 100 m)
- Ablation Laser
 - Préparation d'échantillon non nécessaire
 - Analyse en profondeui
 - Mesures localisées

- Détection possible de tous les éléments du tableau périodique
 - Haute sélectivité
 - Sensibilité du ppm à la centaine de ppm en fonction des éléments
- ightharpoonup Rapide (~seconde) et mesure à distance (1cm ightharpoonup 100 m)
- Ablation Laser
 - Préparation d'échantillon non nécessaire

- Détection possible de tous les éléments du tableau périodique
 - Haute sélectivité
 - Sensibilité du ppm à la centaine de ppm en fonction des éléments
- Rapide (\sim seconde) et mesure à distance (1cm \rightarrow 100 m)
- Ablation Laser
 - Préparation d'échantillon non nécessaire
 - Analyse en profondeur
 - Mesures localisées

- Détection possible de tous les éléments du tableau périodique
 - Haute sélectivité
 - Sensibilité du ppm à la centaine de ppm en fonction des éléments
- Rapide (\sim seconde) et mesure à distance (1cm \rightarrow 100 m)
- Ablation Laser
 - Préparation d'échantillon non nécessaire
 - Analyse en profondeur
 - Mesures localisées

Echantillonnage laser

- Limité ultimement par la limite de diffraction ~1 μm
- Possible de faire des analyses invisibles à l'œil nu

UN EXEMPLE CONCRET: APPLICATION AU PATRIMOINE

Analyse de peintures Murales

• Bien moins destructive que les méthodes classiques... et analyse en temps réel

• Etude de peinture multicouches

V. Detalle

ANALYSES DE FRAGMENTS DE VERRES

50 µm

500 μm

Homogénéité des traces

0.12

0.10

0.07

0.05

0.02

1500

Intensity Cu/Si

ECHANTILLONNAGE LASER: CARTOGRAPHIE DE SPÉLÉOTHÈME

MICRO ANALYSE POSSIBLE - COUPLAGE À UN MICROSCOPE

Analyse de verre nucléaire

Résolution: 10 µm

LoD relative: 0.37 wt%
LoD absolue: 0.3 pico-gramme

Un plasma induit par laser...

"...est un objet complexe qui résulte de mécanismes non linéaires et qui s'étend dans le temps et l'espace en interagissant avec l'atmosphère"

Reproductibilité médiocre

- Signaux bruités
- Effet de matrice(T and Ne)
- Grande quantité d'information
- Energie, longueur d'onde laser
- Morphologie de l'échantillon
- Paramètres de détection
- Optiques de focalisation et de détection...

Un plasma induit par laser...

"...est un objet complexe qui résulte de mécanismes non linéaires et qui s'étend dans le temps et l'espace en interagissant avec l'atmosphère"

Reproductibilité médiocre

- Signaux bruités
- Effet de matrice(T and Ne)
- Grande quantité d'information

Physique des plasmas

"...est un objet complexe qui résulte de mécanismes non linéaires et qui s'étend dans le temps et l'espace en interagissant avec l'atmosphère"

Reproductibilité médiocre

- Signaux bruités
- Effet de matrice(T and Ne)
- Grande quantité d'information

Equation de Boltzmann : densité de population des émetteurs

$$I_{\alpha}^{z} = f \frac{hc}{\lambda_{\alpha}^{z}} \frac{A_{\alpha}^{z} g_{\alpha}^{z}}{U^{z}(T)} N_{\alpha}^{z} \exp \left[-\frac{E_{\alpha}^{z}}{kT} \right] \qquad \substack{z=0 \text{ (neutral)} \\ z=1 \text{ (singly ionised)}}$$

Equation de Saha : population des degrés d'ionisation

$$\frac{N_{\alpha}^{1}}{N_{\alpha}^{0}} = \frac{2}{Ne} \frac{U_{\alpha}^{1}(T)}{U_{\alpha}^{0}(T)} \left(\frac{mkT}{2\pi \hbar^{2}}\right)^{3/2} \exp\left[-\frac{E_{ion}^{1} - \Delta E}{kT}\right]$$

T and Ne sont Les paramètres du plasma

Physique des plasmas

"...est un objet complexe qui résulte de mécanismes non linéaires et qui s'étend dans le temps et l'espace en interagissant avec l'atmosphère"

Reproductibilité médiocre

- Signaux bruités
- Effet de matrice(T and Ne)
- Grande quantité d'information

Un exemple avec des poudres de lait...

Différents types de lait analysés par LIBS montrent de forts effets de matrice ont été observés entre les lait pour bébé et les autres...

Physique des plasmas

"...est un objet complexe qui résulte de mécanismes non linéaires et qui s'étend dans le temps et l'espace en interagissant avec l'atmosphère"

Reproductibilité médiocre

- Signaux bruités
- Effet de matrice(T and Ne)
- Grande quantité d'information

MAIS... EN CE QUI CONCERNE L'ANALYSE QUANTITATIVE...

Approche quantitative standard : Les courbes de calibration

- Procédure lente
- Précision : 1- 10 %
- Exemple pour l'aluminum

UTILISATION DE MÉTHODES CHIMIOMÉTRIQUE...

CALIBRATION FREE – LIBS: PRINCIPE

$$I_{\alpha}^{z} = f \frac{hc}{\lambda_{\alpha}^{z}} \frac{A_{\alpha}^{z} g_{\alpha}^{z}}{U^{z}(T)} N_{\alpha}^{z} \exp \left[-\frac{E_{\alpha}^{z}}{kT} \right] \qquad \substack{z=0 \text{ (neutral)} \\ z=1 \text{ (singly ionised)}}$$

Equation de Saha: population des degrés d'ionisation

$$\frac{N_{\alpha}^{1}}{N_{\alpha}^{0}} = \frac{2}{Ne} \frac{U_{\alpha}^{1}(T)}{U_{\alpha}^{0}(T)} \left(\frac{mkT}{2\pi \hbar^{2}}\right)^{3/2} \exp\left[-\frac{E_{ion}^{1} - \Delta E}{kT}\right]$$

T and Ne sont Les paramètres du plasma

CALIBRATION FREE - LIBS: PRINCIPE

MESURES CF-LIBS SUR DU LAIT EN POUDRE

Instrumentation

Principe

LIBS Setup standard

Instrumentation *Principe*

LIBS Setup standard

+

Contrôle de l'énergie

<u>-</u>

Contrôle de la focalisation

Instrumentation

Principe

LIBS Setup standard

H

Contrôle de l'énergie

H

Contrôle de la focalisation

+

Contrôle de la surface de l'échantillon

+

Imagerie Optique & Raman

Instrumentation

Principe

LIBS Setup standard

+

Contrôle de l'énergie

H

Contrôle de la focalisation

+

Contrôle de la surface de l'échantillon

+

Imagerie Optique & Raman

+

Contrôle de la détection

(Patent Autostar L978)

Motto-Ros et al., Spectrochim. Acta B (2014)

"LIBS" Central Unit

a quick review...

MEASUREMENT REPRODUCIBILITY

Glass reference sample

Protocol

- Measurements performed on 2 reference samples each day
- 200 spectra recorded sucessively per day
- No normalization of any type

Validation instrumentale

Reproductibilité à court terme

Calibration réalisée sur des perles

Ablation 266 nm
~10 mJ
~1 min / échantillon

Performances Quanti

$$R^2 = 0.99998$$

LoD = 0.12 ppm

$$LoQ = 2.9 ppm$$

Grande stabilité de mesure d'un échantillon à l'autre

CONCLUSION

Aucune technique n'est parfaite, seuls les résultats peuvent l'être...

La LIBS se dérive sous de multiples formes, attention de comparer ce qui est comparable...