

LIBS – Principes Physiques Fondamentaux

Arnaud BULTEL[‡]

CORIA, UMR CNRS 6614, Normandie Université, 76801 Saint-Etienne du Rouvray cedex, FRANCE

[‡]arnaud.bultel@coria.fr

ANF LIBS - 15 nov. 2021 - A. BULTEL

Outline

- 1. Laser-Sample Interaction
- 2. Dynamics of the Expansion Shockwave
- **3.** Departure from Equilibrium (McWhirter and Co.)

Outline

- 1. Laser-Sample Interaction
- 2. Dynamics of the Expansion Shockwave
- **3.** Departure from Equilibrium (McWhirter and Co.)

Laser-sample interaction...

	Variable	values
	$E_p(mJ)$	10
$2 \omega_0$ Lens Laser E_p, τ_p, λ_p	$\tau_p(ns)$	5
$\sqrt{2} 2 \omega_0$	$\lambda_p(nm)$	532, 1064
	D(mm)	4
x' x'	f(cm)	10
	$\omega_0(\mu m)$	100
	$\Delta\sigma(cm^{-1})$	0.01
$2 Z_{\rm P} = 2 \frac{\pi \omega_0^2}{\omega_0^2}$ (2×Rayleigh length)	$\varphi_L(Wm^{-2})$	$10^{13} - 10^{14}$
$\begin{array}{c} \mathbf{x} \\ $	$L_L (Wm^{-2}sr^{-1}m^{-1})$	$10^{16} - 10^{17}$
	$L_L \sim \frac{E_p}{\tau_p} \frac{1}{\pi \omega_b^2}$	$\frac{4f^2}{\pi D^2} \Delta \sigma$

 φ_L

Laser-sample interaction...

ANF LIBS – 15 nov. 2021 – A. BULTEL

5

Radiation within the sample...

Variable	Typical values
$E_p(mJ)$	10
$\tau_p(ns)$	5
$\lambda_p(nm)$	532, 1064
D(mm)	4
f(cm)	10
$\omega_0(\mu m)$	100
$\Delta\sigma(cm^{-1})$	0.01
$\varphi_L(Wm^{-2})$	$10^{13} - 10^{14}$
$L_L (Wm^{-2}sr^{-1}m^{-1})$	$10^{16} - 10^{17}$
$L_L \sim \frac{E_p}{\tau_p} \frac{1}{\pi \omega_l}$	$\frac{4f^2}{\pi D^2} \Delta \sigma$

 φ_L

Photon-particle interaction within the sample...

Bremsstrahlung

Bremsstrahlung
$$e^{-}\left(\frac{1}{2}m_{e}v_{e}^{2}\right) + (A, A^{+}) \rightarrow e^{-}\left(\frac{1}{2}m_{e}v_{e}^{\prime 2}\right) + (A, A^{+}) + hv$$

Stimulated Bremsstrahlung $e^{-}\left(\frac{1}{2}m_{e}v_{e}^{2}\right) + (A, A^{+}) + nhv \rightarrow e^{-}\left(\frac{1}{2}m_{e}v_{e}^{\prime 2}\right) + (A, A^{+}) + (n+1)hv$
Inverse Bremsstrahlung IB $e^{-}\left(\frac{1}{2}m_{e}v_{e}^{2}\right) + (A, A^{+}) + nhv \leftarrow e^{-}\left(\frac{1}{2}m_{e}v_{e}^{\prime 2}\right) + (A, A^{+}) + (n+1)hv$

 \Rightarrow Increase in the volumic electron energy e_e ...

ANF LIBS – 15 nov. 2021 – A. BULTEL

Inverse Bremsstrahlung...

Since T_e is locally defined $(\tau_n \gg \tau_{ee} \approx 10^{-14} s)...$

$$\frac{\partial e_e}{\partial t}\Big|_{IB} = \frac{3}{2} n_e k_B \left(\frac{\partial T_e}{\partial t}\right)_{IB} = K_{A^+}(x,t) n_e [A^+] \varphi_L(x,t) \qquad (W m^{-3})$$
$$K_{A^+}(x,t) = \frac{4}{3} \left(\frac{e^2}{4\pi \varepsilon_0}\right)^3 \sqrt{\frac{2\pi}{3 m_e k_B T_e(x,t)}} \frac{G}{m_e h c^4} \lambda_p^3 (m^5)$$

Since T_{A^+} is locally defined $(\tau_p \gg \tau_{A^+A^+} \approx 10^{-14} s)...$ $\left(\frac{\partial e_{A^+}}{\partial t}\right)_{FC} = \frac{3}{2} [A^+] k_B \left(\frac{\partial T_{A^+}}{\partial t}\right)_{FC} = \frac{3}{2} [A^+] k_B \frac{T_e - T_{A^+}}{\tau_{A^+ - e}} (W m^{-3})$ $\tau_{A^+-e} = \left[n_e \; \frac{\sqrt{2\pi}}{m_e \; m_{A^+}} \left(\frac{e^2}{4\pi \; \varepsilon_0} \right)^2 \; \frac{\ln(\Lambda_{A^+-e})}{\left(\frac{k_B T_e}{m_e \; + \frac{k_B T_{A^+}}{m_e \; - \frac{$

 $\tau_{A^+-\rho} \ll \tau_n \text{ if } ns, \tau_{A^+-\rho} \gg \tau_n \text{ if } fs$

Photons disappear...

$$\frac{\partial L_L}{\partial t} + \vec{\Omega} \ \vec{grad} \ L_L = \frac{L_L}{c} \quad (W \ m^{-4} \ sr^{-1}) \ with \ \vec{L}_L < \mathbf{0} \ (also \ scattering \ ...)$$

$$\overrightarrow{rrad} \ L_L = -\vec{\Omega} \ \frac{L_L(\mathbf{0}, t)}{\delta_{sd}} \qquad \qquad \delta_{sd} = \frac{\lambda_p}{2\pi \ k_{RI}} \approx \ 10^{-8} \ m \quad (skin \ depth)$$

$$\delta_{sd} = \frac{\lambda_p}{2\pi k_{RI}} \approx 10^{-8} m \quad (skin \, depth)$$

ANF LIBS - 15 nov. 2021 - A. BULTEL

9

ANF LIBS – 15 nov. 2021 – **A. BULTEL**

Non-equilibrium on the surface...

$T_{s} < 0.9 T_{c}$

Relationship	between S	and KL	conditions -	\rightarrow Mach \mathcal{M}_{KL}
--------------	-----------	--------	--------------	---------------------------------------

\mathcal{M}_{KL}	$ ho_{KL}/ ho_s$	T_{KL}/T_s	p_{KL}/p_s
0	1	1	1
0.05	0.927	0.980	0.908
0.1	0.861	0.960	0.827
0.2	0.748	0.922	0.690
0.4	0.576	0.851	0.490
0.6	0.457	0.785	0.358
0.8	0.371	0.725	0.269
1.0	0.308	0.669	0.206

Clausius-Clapeyron equation $p_s(T_s) = p_{atm} exp \left[\frac{\Delta h_b m}{k_B} \left(\frac{1}{T_b} - \frac{1}{T_s} \right) \right]$

ANF LIBS - 15 nov. 2021 - A. BULTEL

$0.9 T_c < T_s < T_c$

Formation of μ -bubbles within the liquid

 \rightarrow Explosive boiling lasting more than the laser pulse

$T_{s} > T_{c}$?

Not phase change anymore \rightarrow Supercritical fluid This supercritical fluid can be overheated...

Phase non-equilibrium

Screening of the laser pulse by the vapor-plasma produced...

Ablation process...

Outline

- 1. Laser-Sample Interaction
- 2. Dynamics of the Expansion Shockwave
- **3.** Departure from Equilibrium (McWhirter and Co.)

Interaction with a background gas...

Interaction with a background gas...

Induced expansion...

Distribution of the plasma local speed with time

ANF LIBS – 15 nov. 2021 – A. BULTEL

Shorter times: screening by inverse / Bremsstrahlung

Distribution of densities and temperature with time

Structure...

ANF LIBS – 15 nov. 2021 – **A. BULTEL**

Structure...

Outline

- 1. Laser-Sample Interaction
- 2. Dynamics of the Expansion Shockwave
- **3.** Departure from Equilibrium (McWhirter and Co.)

Kinetics of ionization – Example $\mathbf{O} + \mathbf{e} - \stackrel{\mathbf{k_i}}{\rightleftharpoons} \mathbf{O}^+ + \mathbf{2e} -$ E(eV) 30 | 2s 2p⁴ ⁴P_{5/2,3/2,1/2} 28 -26 – K, 24 · 22 - 0+ 20 2s² 2p³ ²P°_{3/2,1/2} 18 2s² 2p³ ²D°_{5/2,3/2} 16 14 2s² 2p³ ⁴S°_{3/2} E_{ioni} = 13.618 eV---Ш 12 2p³ 3p ⁵P_{1,2,3} 10 2p³ 3s ⁵S°₂,³S°₁ 8 -- 0 6 -2p4 1S0 4 -2 2p4 1D2 0 2p4 3P2,1,0 $n_{e}(t=0) < n_{e}^{S}$ $n_{e}(t=0) > n_{e}^{S}$ ANF LIBS – 15 nov. 2021 – **A. BULTEL**

Individual X_m variation rate

$$\begin{split} \frac{1}{v} \frac{dN_{X_m}}{dt} &= -\sum_{n>m} k_{m \to n} \left(1 - \frac{[X_n]}{[X_m] K_{n,m}^B} \right) [X_m] n_e \\ &+ \sum_{n < m} k_{n \to m} \left(1 - \frac{[X_m]}{[X_n] K_{m,n}^B} \right) [X_n] n_e \\ &- \sum_i \ k_{m \to i}^+ \left(1 - \frac{[X_i^+] n_e}{[X_m] K_{i,m}^S} \right) [X_m] n_e \end{split}$$

1

Individual X_i⁺ variation rate $\frac{1}{V}\frac{dN_{x_{i}^{+}}}{dt} = -\sum_{j>i}k_{i\to j}\left(1 - \frac{[x_{j}^{+}]}{[X_{i}^{+}]K_{j,i}^{B}}\right)[X_{i}^{+}]n_{e}$

$$+\sum_{j$$

$$+\sum_{m} k_{m \to i}^{+} \left(1 - \frac{[X_i^+]n_e}{[X_m]K_{i,m}^S}\right) [X_m]n_e$$

Global X variation rate

$$\frac{1}{v}\frac{dN_X}{dt} = \sum_m \frac{1}{v}\frac{dN_{X_m}}{dt} = \begin{cases} -\boldsymbol{k_i}[\boldsymbol{X}]\boldsymbol{n_e} \\ +\boldsymbol{k_r}[\boldsymbol{X}^+]\boldsymbol{n_e}^2 \end{cases}$$

Global X⁺ variation rate

$$\frac{1}{v}\frac{dN_{X^+}}{dt} = \sum_i \frac{1}{v}\frac{dN_{X_i^+}}{dt} = \begin{cases} +k_i[X]n_e\\ -k_r[X^+]n_e^2 \end{cases}$$

J. Annaloro, V. Morel, A. Bultel et al. Phys. Plasmas 19 (2012) 073515

Kinetics of ionization – Example

Kinetics of recombination – Example

Behaviour of the excited states

The ECHREM* code

Assumptions

* Eulerian CHemically REactive Multi-component plasma code

Ar-W...

Shock layer - Argon

The ECHREM* code

*Eulerian CHemically REactive Multi-component plasma code

Shock layer - Argon

Collisional-Radiative model CoRaM-RG

 $Ar + e^{-} \rightleftharpoons Ar^{*} + e^{-}$ $Ar + Ar \rightleftharpoons Ar^{*} + Ar$ $Ar + e^{-} \rightleftharpoons Ar^{*} + 2e^{-}$ $Ar^{*} + e^{-} \rightleftharpoons Ar^{+} + 2e^{-}$ $Ar + Ar \rightleftharpoons Ar^{+} + e^{-} + Ar$ $Ar^{*} + Ar \rightleftharpoons Ar^{+} + e^{-} + Ar$ $Ar^{*} + Ar^{*} \rightleftharpoons Ar^{+} + e^{-} + Ar$ $Ar^{*} + Ar^{*} \rightleftharpoons Ar^{+} + e^{-} + Ar$ $Ar^{*} + e^{-} \rightleftharpoons Ar^{*}ou Ar + Ar$ $Ar^{+} + e^{-} \Rightarrow Ar^{*}ou Ar + hv$ $Ar_{j} \rightarrow Ar_{i < j} + hv$

Exc. Elec. Impact Exc. Elec. Impact Ioni. Elec. Impact Ioni. Elec. Impact Ioni. Heavy Impact Ioni. Heavy Impact Penning Ioni. Disso. Recomb. Rad. Recomb. Spont. Emiss.

30 000 elementary processes

Collisional Database $k_i(T_{A,e}) = \sqrt{\frac{8 k_B T_{A,e}}{\pi \mu}} \int_{x_0}^{+\infty} x e^{-x} \sigma_i(x) dx$ with $\cdot \sigma_i(x) \varepsilon$ collisional cross section and $\cdot x = \frac{\varepsilon}{k_B T_{A,e}}$ reduced collision energy Backward rate coefficient deduced from the **Detailed Balance**

Central plasma - Tungsten

Collisional-Radiative model CoRaM-W

$$\begin{split} W_i &+ e^- \rightleftharpoons W_{j>i} + e^- \\ W_i^+ + e^- \rightleftharpoons W_{j>i}^+ + e^- \\ W_i &+ \sum_{i,Z} W_i^{Z+} \rightleftharpoons W_{j>i} + \sum_{i,Z} W_i^{Z+} \\ W_i^+ + \sum_{i,Z} W_i^{Z+} \rightleftharpoons W_{j>i} + \sum_{i,Z} W_i^{Z+} \\ W_i^+ + e^- \rightleftharpoons W_j^+ + 2e^- \\ W_j^+ + e^- \rightleftharpoons W_2^{Z+} + 2e^- \\ W_i^+ + \sum_{i,Z} W_i^{Z+} \rightleftharpoons W_j^+ + e^- + \sum_{i,Z} W_i^{Z+} \\ W_j^+ + \sum_{i,Z} W_i^{Z+} \rightleftharpoons W_2^{Z+} + e^- + \sum_{i,Z} W_i^{Z+} \\ W_j^+ + e^- \rightleftharpoons W_j^+ + h\nu \\ W_j^+ + e^- \rightleftharpoons W_i + h\nu \\ W_j^+ \to W_{i$$

520 000 elementary processes

Radiative Database

NIST, Atomic Line List, ADAS, HULLAC...

McWhirter criterion and other...

McWhirter criterion and other...

McWhirter criterion and other...

 $p = 10^4 Pa, T_e = 15000 K, t = 1 \,\mu s$

McWhirter criterion $n_{e,m^{-3}} > 1.6 \times 10^{18} \sqrt{T_{e,K}} (\Delta E_{ji,eV})_{max}^{3}$

 $n_e > 6,01 \times 10^{21} m^{-3}$ for Al $n_e > 1,96 \times 10^{22} m^{-3}$ for Al^+

Criterion seems to be wrong $T_{exc} \neq T_e$

Te (K)	15000	
	AI	AI+
Z	1	2
Deji,eV_max	3.13	4.64
Deji,eV_rés	3.14	7.42
g_max	2	1
g_min	4	1
McWhirter	6.01E+21	1.96E+22
Griem	3.79E+20	6.40E+23
Drawin	7.86E+20	1.57E+21

ANF LIBS – 15 nov. 2021 – **A. BULTEL**